Concurrent Engineering Design

This Book Is Written By A Group Of International Experts On Concurrent Product And Process Design And Development. It Reflects Modern Trends And Approaches In Concurrent Engineering, With Particular Emphasis On Product Development Cycle. A Multi-Disciplinary Approach Is Adopted Throughout The Book. The Book Highlights Concurrent Engineering Organization; Enabling Tools And Techniques For Successful Concurrent Engineering; Manufacturing Strategy Decision Support Tools; Measure Of Manufacturing Performance For Concurrent Engineering; Economic Justification In A Concurrent Engineering Environment; Product Data Requirements In Concurrent Engineering. All These Features Make This Book An Extremely Valuable Reference Source For Practising Professionals And Engineering Students. A Number Of Prominent Scientists And Experts From Different Countries Have Jointly Worked To Compile The Chapters Of This Book Reflecting The Latest Developments And Modern Approaches To Concurrent Engineering.

Methods presented involve the use of simulation and modeling tools and virtual workstations in conjunction with a design environment. This allows a diverse group of researchers, manufacturers, and suppliers to work within a comprehensive network of shared knowledge. The design environment consists of engineering workstations and servers and a suite of simulation, quantitative, computational, analytical, qualitative and experimental tools. Such a design environment will allow the effective and efficient integration of complete product design, manufacturing process design, and customer satisfaction predictions. This volume enables the reader to create an integrated concurrent engineering design and analysis infrastructure through the use of virtual workstations and servers; provide remote, instant sharing of engineering data and resources for the development of a product, system, mechanism, part, business and/or process, and develop applications fully compatible with international CAD/CAM/CAE standards for product representation and modeling. Presents a top-down approach to the design, development, testing and recyclability of products, components and systems across a wide range of industries. Starting with the desired result and working back through the details, it shows how to produce goods, taking into account the challenges of actual manufacture, what the reliability requirements should be, quality control, associated costs, customer needs and more. Additional features include case studies and team negotiating. Also well-illustrated with figures, photographs, charts and tables and includes an extensive bibliography.

Report proposes a computerized communication for engineers which facilitates concurrent engineering. Over the past decade, with greater emphasis being placed upon shorter lead times, better quality products, reduced product costs, and greater customer satisfaction, the topic of Engineering Design has received increased interest from the industrial and academic communities. Considerable effort has been directed at developing design process methodologies and building computer tools that focus upon relatively narrow aspects of design, but many key problems in Engineering Design research and practice remain unanswered. Resulting from the First International Engineering Design Debate held in Glasgow, UK in late 1996, this volume discusses the main issues concerning the improvement of design productivity. Covering design studies, design development, concurrent engineering and design knowledge and information, it attempts to derive a common understanding of the basic factors, problems and potential solutions involved. Design for ManufacturabilityHow to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean ProductionCRC Press

Bringing together the expertise of worldwide authorities in the field, Design for X is the first comprehensive book to offer systematic and structured coverage of contemporary and concurrent product development techniques. It features over fifteen techniques, including: design for manufacture and assembly; design for distribution; design for quality; and design for the environment. Alternative approaches and common elements are discussed and critical issues such as integration and tradeoff are explored.

Concurrent Engineering Techniques and Applications reviews advances in concurrent engineering techniques and applications. An in-depth treatment of the quantitative and economic aspects of concurrent engineering is presented, with emphasis on techniques for measuring the performances of concurrent engineering and for comparing its economic effectiveness with that of traditional engineering. Open systems software standards in concurrent engineering are also discussed. Comprised of 12 chapters, this volume begins with an introduction to techniques for measuring the performances of concurrent engineering and for comparing its economic effectiveness with that of traditional engineering. The next chapter deals with open systems software standards and how to use open systems products effectively in concurrent engineering. The discussion then turns to concurrent product design and manufacturing; the essential issues involved in design-decision support in concurrent/simultaneous engineering; design for manufacturing and assembly and concurrent engineering in electro-optical systems; and the use of visualization in concurrent engineering. The use of multimedia presentation techniques and technology in the concurrent engineering process is also considered, along with techniques in technical documentation. This monograph will be useful to students, academicians, practicing professionals, and research workers.

Hardbound. Increasing global competition in a product-oriented industry has required manufacturing enterprises to continuously improve product quality, functionality, and features, as well as implementing a reduction in product cost and time to market. The traditional approach to product development requires a substantial amount of time to evolve the product design from its initial configuration to the final product. Since 70% or more of the total product cost is determined in the design stages, significant potential savings can be achieved by improving traditional design practices. Because of its effectiveness and great potential in product design, concurrent engineering (CE) is attracting great interest from both industry and academia. The thirteen research papers in this volume provide a current overview on progress in concurrent engineering. Divided into two parts, Part I primarily focuses on methodology and applications of CE, while Part II discusses Agent Technology, or Agent-Based Approaches, is a new paradigm for developing software applications. It has been hailed as the next significant breakthrough in software development, and the new revolution in software after object technology or object-oriented programming. In this context, an agent is a computer system which is capable of acting autonomously in its environment in order to meet its design objectives. So in the area of concurrent design and manufacturing, a manufacturing resource, namely a machine or an operator, may cooperate and negotiate with other agents for task assignment; and an existing engineering software can be integrated with a distributed integrated engineering design and manufacturing system. Hence in agent-based systems, there is no centralized system control structure, and no pre-defined agenda for the system execution, as exist in traditional engineering design and analysis infrastructure through the use of virtual workstations and servers; provide remote, instant sharing of engineering data and resources for the development of a product, system, mechanism, part, business and/or process, and develop applications fully compatible with international CAD/CAM/CAE standards for product representation and modeling. Presents a top-down approach to the design, development, testing and recyclability of products, components and systems across a wide range of industries. Starting with the desired result and working back through the details, it shows how to produce goods, taking into account the challenges of actual manufacture, what the reliability requirements should be, quality control, associated costs, customer needs and more. Additional features include case studies and team negotiating. Also well-illustrated with figures, photographs, charts and tables and includes an extensive bibliography.

Report proposes a computerized communication for engineers which facilitates concurrent engineering. Over the past decade, with greater emphasis being placed upon shorter lead times, better quality products, reduced product costs, and greater customer satisfaction, the topic of Engineering Design has received increased interest from the industrial and academic communities. Considerable effort has been directed at developing design process methodologies and building computer tools that focus upon relatively narrow aspects of design, but many key problems in Engineering Design research and practice remain unanswered. Resulting from the First International Engineering Design Debate held in Glasgow, UK in late 1996, this volume discusses the main issues concerning the improvement of design productivity. Covering design studies, design development, concurrent engineering and design knowledge and information, it attempts to derive a common understanding of the basic factors, problems and potential solutions involved. Design for ManufacturabilityHow to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean ProductionCRC Press

Bringing together the expertise of worldwide authorities in the field, Design for X is the first comprehensive book to offer systematic and structured coverage of contemporary and concurrent product development techniques. It features over fifteen techniques, including: design for manufacture and assembly; design for distribution; design for quality; and design for the environment. Alternative approaches and common elements are discussed and critical issues such as integration and tradeoff are explored.

Concurrent Engineering Techniques and Applications reviews advances in concurrent engineering techniques and applications. An in-depth treatment of the quantitative and economic aspects of concurrent engineering is presented, with emphasis on techniques for measuring the performances of concurrent engineering and for comparing its economic effectiveness with that of traditional engineering. Open systems software standards in concurrent engineering are also discussed. Comprised of 12 chapters, this volume begins with an introduction to techniques for measuring the performances of concurrent engineering and for comparing its economic effectiveness with that of traditional engineering. The next chapter deals with open systems software standards and how to use open systems products effectively in concurrent engineering. The discussion then turns to concurrent product design and manufacturing; the essential issues involved in design-decision support in concurrent/simultaneous engineering; design for manufacturing and assembly and concurrent engineering in electro-optical systems; and the use of visualization in concurrent engineering. The use of multimedia presentation techniques and technology in the concurrent engineering process is also considered, along with techniques in technical documentation. This monograph will be useful to students, academicians, practicing professionals, and research workers.

Hardbound. Increasing global competition in a product-oriented industry has required manufacturing enterprises to continuously improve product quality, functionality, and features, as well as implementing a reduction in product cost and time to market. The traditional approach to product development requires a substantial amount of time to evolve the product design from its initial configuration to the final product. Since 70% or more of the total product cost is determined in the design stages, significant potential savings can be achieved by improving traditional design practices. Because of its effectiveness and great potential in product design, concurrent engineering (CE) is attracting great interest from both industry and academia. The thirteen research papers in this volume provide a current overview on progress in concurrent engineering. Divided into two parts, Part I primarily focuses on methodology and applications of CE, while Part II discusses Agent Technology, or Agent-Based Approaches, is a new paradigm for developing software applications. It has been hailed as the next significant breakthrough in software development, and the new revolution in software after object technology or object-oriented programming. In this context, an agent is a computer system which is capable of acting autonomously in its environment in order to meet its design objectives. So in the area of concurrent design and manufacturing, a manufacturing resource, namely a machine or an operator, may cooperate and negotiate with other agents for task assignment; and an existing engineering software can be integrated with a distributed integrated engineering design and manufacturing system. Hence in agent-based systems, there is no centralized system control structure, and no pre-defined agenda for the system execution, as exist in traditional
Read Online Concurrent Engineering Design

systems. This book systematically describes the principles, key issues, and applications of agent technology in relation to concurrent engineering design and manufacturing. It introduces the methodology, standards, frameworks, tools, and languages of agent-based approaches and presents a general procedure for building agent-based concurrent engineering design and manufacturing systems. Both professional and university researchers and postgraduates should find this an invaluable presentation of the corresponding theories and methods, with some practical examples for developing multi-agent systems in the domain.

This book is intended to introduce and familiarize design, production, quality, and process engineers, and their managers to the importance and recent developments in concurrent engineering (CE) and design for manufacturing (DFM) of new products. CE and DFM are becoming an important element of global competitiveness in terms of achieving high-quality and low-cost products. The new product design and development life cycle has become the focus of many manufacturing companies as a road map to shortening new product introduction cycles, and to achieving a quick ramp-up of production volumes. Customer expectations have increased in demanding high-quality, functional, and user-friendly products. There is little time to waste in solving manufacturing problems or in redesigning products for ease of manufacture, since product life cycles have become very short because of technological breakthroughs or competitive pressures. Another important reason for the increased attention to DFM is that global products have developed into very opposing roles: either they are commodities, with very similar features, capabilities, and specifications; or they are very focused on a market niche. In the first case, the manufacturers are competing on cost and quality, and in the second they are in race for time to market. DFM could be a very important competitive weapon in either case, for lowering cost and increasing quality; and for increasing production ramp-up to mature volumes.

This work on a systems approach to ergonomic design-manufacturing includes information on ease of manual/automatic assembly, biomechanical, cognitive and perceptual workload, task allocation, job satisfaction, socio-technical systems design, Design for Manufacturability: How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production shows how to use concurrent engineering teams to design products for all aspects of manufacturing with the lowest cost, the highest quality, and the quickest time to stable production. Extending the concepts of design for manufacturability to an advanced product development model, the book explains how to simultaneously make major improvements in all these product development goals, while enabling effective implementation of Lean Production and quality programs. Illustrating how to make the most of lessons learned from previous projects, the book proposes numerous improvements to current product development practices, education, and management. It outlines effective procedures to standardize parts and materials, save time and money with off-the-shelf parts, and implement a standardization program. It also spells out how to work with the purchasing department early on to select parts and materials that maximize quality and availability while minimizing part lead-times and ensuring desired functionality. Describes how to design families of products for Lean Production, build-to-order, and mass customization Emphasizes the importance of quantifying all product and overhead costs and then provides easy ways to quantify total cost Details dozens of design guidelines for product design, including assembly, fastening, test, repair, and maintenance Presents numerous design guidelines for design parts for manufacturability Shows how to design in quality and reliability with many quality guidelines and sections on mistake-proofing (poka-yoke) Describing how to design parts for optimal manufacturability and compatibility with factory processes, the book provides a big picture perspective that emphasizes designing for the lowest total cost and time to stable production. After reading this book you will understand how to reduce total costs, ramp up quickly to volume production without delays or extra cost, and be able to scale up production rapidly so as not to limit growth

Composite Materials: Concurrent Engineering Approach covers different aspects of concurrent engineering approaches in the development of composite products. It is an equally valuable reference for teachers, students, and industry sectors, including information and knowledge on concurrent engineering for composites that are gathered together in one comprehensive resource. Contains information that is specially designed for concurrent engineering studies Includes new topics on conceptual design in the context of concurrent engineering for composites Presents new topics on composite materials selection in the context of concurrent engineering for composites Written by an expert in both areas (concurrent engineering and composites) Provides information on ‘green’ composites

In the area of computer-integrated manufacturing, concurrent engineering is recognized as the manufacturing philosophy for the next decade.

These proceedings contain lectures presented at the NATO Advanced Study Institute on Concurrent Engineering Tools and Technologies for Mechanical System Design held in Iowa City, Iowa, 25 May - 5 June, 1992. Lectures were presented by leaders from Europe and North America in disciplines contributing to the emerging international focus on Concurrent Engineering of mechanical systems. Participants in the Institute were specialists from throughout NATO in disciplines constituting Concurrent Engineering, many of whom presented contributed papers during the Institute and all of whom participated actively in discussions on technical aspects of the subject. The proceedings are organized into the following five parts: Part 1 Basic Concepts and Methods Part 2 Application Sectors Part 3 Manufacturing Part 4 Design Sensitivity Analysis and Optimization Part 5 Virtual Prototyping and Human Factors Each of the parts is comprised of papers that present state-of-the-art concepts and methods in fields contributing to Concurrent Engineering of mechanical systems. The lead-off papers in each part are based on invited lectures, followed by papers based on contributed presentations made by participants in the Institute.

The proceedings contain papers accepted for the 17th ISPE International Conference on Concurrent Engineering, which was held in Cracow, Poland, September 6-10, 2010. Concurrent Engineering (CE) has a history of over twenty years. At first, primary focus was on bringing downstream information as much upstream as possible, by introducing parallel processing of processes, in order to prevent errors at the later stage which would sometimes cause irrevocable damage and to reduce time to market. During the period of more than twenty years, numerous new concepts, methodologies and tools have been developed. During this period the background for engineering/manufacturing has changed extensively. Now, industry has to work with global markets. The globalization brought forth a new network of experts and companies across many different domains and fields in distributed environments. These collaborations integrated with very high level of professionalism and specialisation, provided the basis for innovations in design and manufacturing and succeeded in creating new products on a global market. This work offers a step-by-step approach to the overall concurrent engineering (CE) development process, presenting both fundamental principles and advanced concepts, while focusing on rapid product development and cost-effective designs. The book also provides an introduction to Cost Driven Design, with specific examples on how to minimize expenses by understanding the
basis of product costs. The process of concurrent engineering is explained from initial planning to production start-up. Increasing intensity surrounding globalization of manufacturing and its competitive environment force a much higher ‘expectation’ of design as falling within the ‘optimum range of parameters.’ This new book explains how the CE Design process provides a stable, repeatable process through which increased accuracy is achieved. Section I: The Business Environment Surrounding Concurrent Engineering Design includes an introduction, asks ‘Why’ CE Design, explains how CE Design can create a competitive advantage, and addresses CE Design as a world class manufacturing enabler. Section II: Concurrent Engineering Design Business Process Framework looks at CE Design As relationship to process management, the design process, and manufacturability process. Section III: Concurrent Engineering Design Architectural and Implementation Framework focuses on CE Design As automated infrastructure, and implementation planning for engineering design.